Quaternionic Quantum Mechanics and Noncommutative Dynamics

نویسنده

  • Stephen L. Adler
چکیده

In this talk I shall first make some brief remarks on quaternionic quantum mechanics, and then describe recent work with A.C. Millard in which we show that standard complex quantum field theory can arise as the statistical mechanics of an underlying noncommutative dynamics. In quaternionic quantum mechanics, the Dirac transition amplitudes 〈ψ|φ〉 are quaternion valued, that is, they have the form r0 + r1i+ r2j + r3k, where r0,1,2,3 are real numbers and i, j, k are quaternion imaginary units obeying i = j = k = −1 , ij = −ji = k, jk = −kj = i, ki = −ik = j. The Schrödinger equation takes the form ∂|ψ〉 ∂t =− H̃|ψ〉 , H̃ =− H̃ . (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Quantum Mechanics and Soliton Regularization of Noncommutative Field Theory

We construct an approximation to field theories on the noncommutative torus based on soliton projections and partial isometries which together form a matrix algebra of functions on the sum of two circles. The matrix quantum mechanics is applied to the perturbative dynamics of scalar field theory, to tachyon dynamics in string field theory, and to the Hamiltonian dynamics of noncommutative gauge...

متن کامل

Quantum Dynamics in Regions of Quaternionic Curvature

The complex unit appearing in the equations of quantum mechanics is generalised to a quaternionic structure on spacetime, leading to the consideration of complex quantum mechanical particles whose dynamical behaviour is governed by inhomogeneous Dirac and Schrödinger equations. Mixing of hyper-complex components of wavefunctions occurs through their interaction with potentials dissipative into ...

متن کامل

On the determinant of quaternionic polynomial matrices and its application to system stability

The research reported in this paper is motivated by the study of stability for linear dynamical systems with quaternionic coefficients. These systems can be used to model several physical phenomena, for instance, in areas such as robotics and quantum mechanics. More concretely, quaternions are a powerful tool in the description of rotations [1]. There are situations, especially in robotics, whe...

متن کامل

v 1 2 0 Fe b 20 03 Lagrangian Aspects of Quantum Dynamics on a Noncommutative Space ∗

In order to evaluate the Feynman path integral in noncommutative quantum mechanics, we consider properties of a Lagrangian related to a quadratic Hamiltonian with noncommutative spatial coordinates. A quantum-mechanical system with noncommutative coordinates is equivalent to another one with commutative coordinates. We found connection between quadratic classical Lagrangians of these two system...

متن کامل

Quaternionic Quasideterminants and Determinants

Quasideterminants of noncommutative matrices introduced in [GR, GR1] have proved to be a powerfull tool in basic problems of noncommutative algebra and geometry (see [GR, GR1-GR4, GKLLRT, GV, EGR, EGR1, ER,KL, KLT, LST, Mo, Mo1, P, RS, RRV, Rsh, Sch]). In general, the quasideterminants of matrix A = (aij) are rational functions in (aij)’s. The minimal number of successive inversions required to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996